45 research outputs found

    Protoplanetary disk lifetimes vs stellar mass and possible implications for giant planet populations

    Full text link
    We study the dependence of protoplanetary disk evolution on stellar mass using a large sample of young stellar objects in nearby young star-forming regions. We update the protoplanetary disk fractions presented in our recent work (paper I of this series) derived for 22 nearby (< 500 pc) associations between 1 and 100 Myr. We use a subsample of 1 428 spectroscopically confirmed members to study the impact of stellar mass on protoplanetary disk evolution. We divide this sample into two stellar mass bins (2 M⊙_{\odot} boundary) and two age bins (3 Myr boundary), and use infrared excesses over the photospheric emission to classify objects in three groups: protoplanetary disks, evolved disks, and diskless. The homogeneous analysis and bias corrections allow for a statistically significant inter-comparison of the obtained results. We find robust statistical evidence of disk evolution dependence with stellar mass. Our results, combined with previous studies on disk evolution, confirm that protoplanetary disks evolve faster and/or earlier around high-mass (> 2 M⊙_{\odot}) stars. We also find a roughly constant level of evolved disks throughout the whole age and stellar mass spectra. We conclude that protoplanetary disk evolution depends on stellar mass. Such a dependence could have important implications for gas giant planet formation and migration, and could contribute to explaining the apparent paucity of hot Jupiters around high-mass stars.Comment: Accepted for publication in A&A. 13 pages, 8 figures, 5 table

    Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    Get PDF
    Dust in debris disks is produced by colliding or evaporating planetesimals, remnants of the planet formation process. Warm dust disks, known by their emission at < 24 micron, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.Comment: 8 pages, 3 figures, accepted for publication at Astronomy & Astrophysics on 4 August 201

    Proper motions of young stars in Chamaeleon. I. A Virtual Observatory study of spectroscopically confirmed members

    Full text link
    (abridged) We want to provide further evidence of the origin of the proposed stellar members of Chamaeleon and to identify interlopers from the foreground \epsilon Cha and \eta Cha associations. To this aim, we compile lists of spectroscopically confirmed members of Chamaeleon I and II, \epsilon Cha and \eta Cha, and of background objects in the same line of sight. Using Virtual Observatory tools, we cross-match these lists with the UCAC3 catalogue to get the proper motions of the objects. In the vector point diagram, we identify the different moving groups, and use this information to study the membership of proposed candidate members of the associations from the literature. For those objects with available radial velocities, we compute their Galactic space velocities. We look for correlations between the known properties of the objects and their proper motions. The members of the dark clouds exhibit clearly different proper motions from those of the foreground associations and of the background stars. The data suggest that Chamaeleon II could have different dynamical properties from Chamaeleon I. Although the two foreground clusters \epsilon and \eta Chamaeleontis constitute two different proper motion groups, they have similar spatial motions, which are different from the spatial motion of Chamaeleon I. On the other hand, the space motions of the Chamaeleon II stars look more similar to those of the foreground clusters than to the Chamaeleon I stars, but the numbers are low. Hence, with the available data it is unclear to what extent the stellar populations in both clouds are physically connected to each other. We find no correlations between the proper motions and the properties of the objects in either of the clouds

    Infrared study of transitional disks in Ophiuchus with Herschel

    Full text link
    Context. Observations of nearby star-forming regions with the Herschel Space Observatory complement our view of the protoplanetary disks in Ophiuchus with information about the outer disks. Aims. The main goal of this project is to provide new far-infrared fluxes for the known disks in the core region of Ophiuchus and to identify potential transitional disks using data from Herschel. Methods. We obtained PACS and SPIRE photometry of previously spectroscopically confirmed young stellar objects (YSO) in the region and analysed their spectral energy distributions. Results. From an initial sample of 261 objects with spectral types in Ophiuchus, we detect 49 disks in at least one Herschel band. We provide new far-infrared fluxes for these objects. One of them is clearly a new transitional disk candidate. Conclusions. The data from Herschel Space Observatory provides fluxes that complement previous infrared data and that we use to identify a new transitional disk candidate.Comment: 21 pages, with 5 figures. Accepted in Astronomy & Astrophysic

    VISION - Vienna survey in Orion. III. Young stellar objects in Orion A

    Get PDF
    38 pages, 25 figures, Accepted for publication by A&A. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESOWe extend and refine the existing young stellar object (YSO) catalogs for the Orion A molecular cloud, the closest massive star-forming region to Earth. This updated catalog is driven by the large spatial coverage (18.3 deg^2, ~950 pc^2), seeing limited resolution (~0.7''), and sensitivity (Ks<19 mag) of the ESO-VISTA near-infrared survey of the Orion A cloud (VISION). Combined with archival mid- to far-infrared data, the VISTA data allow for a refined and more robust source selection. We estimate that among previously known protostars and pre-main-sequence stars with disks, source contamination levels (false positives) are at least ∌7% and ∌2.5%, respectively, mostly due to background galaxies and nebulosities. We identify 274 new YSO candidates using VISTA/Spitzer based selections within previously analyzed regions, and VISTA/WISE based selections to add sources in the surroundings, beyond previously analyzed regions. The WISE selection method recovers about 59% of the known YSOs in Orion A's low-mass star-forming part L1641, which shows what can be achieved by the all-sky WISE survey in combination with deep near-infrared data in regions without the influence of massive stars. The new catalog contains 2978 YSOs, which were classified based on the de-reddened mid-infrared spectral index into 188 protostars, 184 flat-spectrum sources, and 2606 pre-main-sequence stars with circumstellar disks. We find a statistically significant difference in the spatial distribution of the three evolutionary classes with respect to regions of high dust column-density, confirming that flat-spectrum sources are at a younger evolutionary phase compared to Class IIs, and are not a sub-sample seen at particular viewing angles.Peer reviewedFinal Accepted Versio

    XMM-Newton observations of the nearby brown dwarf LP 944-20

    Get PDF
    The nearby (d=5.0 pc) brown dwarf LP944-20 was observed with the XMM-Newton satellite on 07 January 2001. The target was detected with the Optical Monitor (V=16.736±\pm0.081), but it was not detected during the ≈48\approx 48 ks observation with the X-ray telescopes. We determine a 3σ3\sigma upper limit for the X-ray emission from this object of LX<3.1×1023L_{X}<3.1 \times 10^{23} ergs⋅s−1ergs \cdot s^{-1}, equivalent to a luminosity ratio upper limit of log⁥(LX/Lbol)≀−6.28\log{(L_{X}/L_{bol})} \le -6.28. This measurement improves by a factor of 3 the previous \emph{Chandra} limit on the quiescent X-ray flux. This is the most sensitive limit ever obtained on the quiescent X-ray emission of a brown dwarf. Combining the XMM data with previous \emph{ROSAT} and \emph{Chandra} data, we derive flare duty cycles as a function of their luminosities. We find that very strong flares [Log(LX/Lbol)>−(L_X/L_{bol})>-2.5] are very rare (less than 0.7% of the time). Flares like the one detected by Chandra [Log(LX/Lbol)=−(L_X/L_{bol})=-4.1] have a duty cycle of about 6%, which is lower than the radio flare duty cycle (∌\sim13%). When compared with other M dwarfs, LP944-20 appears to be rather inactive in X-rays despite of its relative youth, fast rotation and its moderately strong activity at radio wavelengths.Comment: 13 pages, 4 figures, accepted for publication in New Astronom

    A spectral comparison of (379) Huenna and its satellite

    Get PDF
    We present near-infrared spectral measurements of Themis family asteroid (379) Huenna (D~98 km) and its 6 km satellite using SpeX on the NASA IRTF. The companion was farther than 1.5" from the primary at the time of observations and was approximately 5 magnitudes dimmer. We describe a method for separating and extracting the signal of a companion asteroid when the signal is not entirely resolved from the primary. The spectrum of (379) Huenna has a broad, shallow feature near 1 {\mu}m and a low slope, characteristic of C-type asteroids. The secondary's spectrum is consistent with the taxonomic classification of C-complex or X-complex. The quality of the data was not sufficient to identify any subtle feature in the secondary's spectrum.Comment: 6 pages, 4 figures, 2 tables - Accepted for publication in Icaru
    corecore